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It is common for nonlinear dynamical systems to exhibit behaviors where orbits switch between dis-
tinct chaotic phases in an intermittent fashion. A feedback control strategy using small parameter per-
turbations is proposed to stabilize the trajectory around a desired chaotic phase. The idea is illustrated
by using an intermittent chaotic time series generated by model dynamical systems in parameter regimes
after critical events such as the interior crisis. Relevance to biological situations is pointed out.

PACS number(s): 05.45.+b

I. INTRODUCTION

In this paper, we consider the following situation. Sup-
pose there is a nonlinear dynamical system whose orbits
switch intermittently between distinct chaotic phases.
Suppose further that one of these chaotic phases corre-
sponds to a desired operational state of the system. The
question we address is, can one apply small feedback con-
trol to one of the available system parameters to keep tra-
jectories originating from random initial conditions in the
desired chaotic phase so as to avoid the other chaotic
phases which may correspond to undesired operational
states of the system?

The intermittent chaotic behavior described above
arises commonly in nonlinear dynamical systems. For
example, a dynamical system in a parameter regime after
a bifurcation called the “interior crisis” [1-3] exhibits
such intermittent chaotic behavior. The phenomenology
of the interior crisis is as follows. Before the crisis, there
is a chaotic attractor and a coexisting nonattracting
chaotic saddle in the phase space. The chaotic attractor
and the chaotic saddle are separated from each other and,
hence, trajectories originating from almost all initial con-
ditions eventually asymptote to the chaotic attractor. At
the crisis, the chaotic saddle collides with the chaotic at-
tractor so that the original nonattracting chaotic saddle
becomes part of the combined attractor, whose phase-
space extent is larger than the original chaotic attractor.
After the crisis, trajectories wander on the whole com-
bined larger attractor in such a way that the trajectories
visit both parts, which correspond to the original chaotic
attractor and the chaotic saddle, in an intermittent
fashion. As a consequence, the time series recorded from
such a trajectory exhibits distinct intermittent chaotic
phases. As an example, Fig. 1 shows a time series record-
ed from the Ikeda map [4] at a parameter value after an
interior crisis, where x,, versus rn is plotted; x, is a state
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variable and n is the discrete time (details will be de-
scribed in Sec. III). The intermittent chaotic behavior in
Fig. 1 is clear, where there are two distinct chaotic
phases, one being the chaotic signal confined approxi-
mately within —0.1=<x, <1.1 and the other the chaotic
signal outside this range of x, values. Our goal is to de-
vise a scheme to keep trajectories in one of the chaotic
phases by applying only small parameter perturbations to
the system.

Our work is motivated by the fact that intermittent
chaotic signals also arise in biomedical systems. For in-
stance, the electroencephalogram (EEG) or the electro-
corticogram (ECoG) signals measured from patients with
certain types of epileptic seizures exhibit distinct random
phases [5]. Under normal physiological condition, the
EEG or ECoG signal appears to be random. When the
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FIG. 1. An intermittent chaotic time series generated by the

Ikeda-Hammel-Jones-Moloney map.
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seizure strikes, the EEG or ECoG signal appears to ex-
hibit a distinct, qualitatively different random behavior
with signal amplitude much larger than that of the ran-
dom signal under normal condition. Evidence now indi-
cates that deterministic chaos may play a role in these
random EEG and ECoG signals [6]. Thus, signals in
these random phases are likely to be deterministically
chaotic. The small amplitude chaotic signal would corre-
spond to a ‘“healthy” state [7], while the large amplitude
chaotic signal may correspond to the seizure state, or
“sick” state. It is then desirable to keep the signal in the
healthy chaotic phase to prevent seizures from occurring
by applying small perturbations. While this is a rather
ambitious goal, our idea may provide alternative insight
into the study of therapeutical techniques for diseases
such as the epileptic seizures [8]. We emphasize, howev-
er, that the claim of “chaos in EEG or ECoG” (or ‘“‘chaos
in the brain” [9]) has not yet been established with the
current available data, although preliminary evidence
based on the time series analysis suggests some signature
of the chaotic behavior in the brain [8,9]. Such evidence
usually consists of calculations of the correlation dimen-
sion or the Lyapunov exponents from the EEG and
ECoG signals. Whether or not these calculations are reli-
able depends on the validity of the hypothesis that the
EEG and ECoG signals are generated by stationary
deterministic chaotic processes. Such an hypothesis
remains questionable because of the nonstationary
characteristics apparently present in typical EEG and
ECoG signals [10]. The work reported in this paper deals
with low-dimensional deterministic chaotic systems.
Therefore, at present it is not clear whether our work can
be applied to more complicated random time series such
as the EEG and ECoG signals.

Control of chaos by stabilizing unstable periodic orbits
embedded in a chaotic attractor has been proposed by
Ott, Grebogi, and Yorke (OGY) in 1990 [11]. The basic
idea of the OGY method is as follows. First, one chooses
an unstable periodic orbit embedded in the attractor, the
one that yields the best system performance according to
some criterion. Second, one defines a small region
around the desired periodic orbit. For chaotic attractors,
a trajectory originating from a random initial condition
will come arbitrarily close to the unstable periodic orbit
at some later time. This time scales with the size of the
small neighborhood around the periodic orbit as a power
law [11]. When this occurs, small judiciously chosen
temporal parameter perturbations are applied to force
the trajectory to approach the unstable periodic orbit be-
cause, without control, the trajectory will subsequently
leave the periodic orbit. This method is extremely flexi-
ble because it allows for the stabilization of different
periodic orbits, depending on one’s needs, for the same
set of nominal values of the parameter. This idea has
since stimulated many theoretical investigations [12] and
has been successfully applied to various physical [13],
chemical [14], and biological [15] systems.

Our method of confining trajectories in the desired
chaotic phase is based on OGY’s idea of controlling
chaos. The strategy is to construct a long target chaotic
orbit that lives only on the part of the attractor corre-
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sponding to the desired chaotic phase. By stabilizing tra-
Jjectories around the target orbit, the part of the attractor
that corresponds to the undesired chaotic phases can be
avoided. This can indeed be achieved if the target chaot-
ic orbit is an approximately continuous trajectory gen-
erated by the evolution equations of the dynamical sys-
tem. Such a target orbit possesses a complete geometric
structure of stable and unstable directions that exist for
typical chaotic trajectories. Small, time-dependent pa-
rameter perturbations can then be applied to keep trajec-
tories originating from random initial conditions in the
neighborhood of the target orbit. The construction of
such a target orbit is, therefore, a crucial step in our con-
trolling method. This will be detailed in Sec. II. We
mention that a method for stabilizing chaotic orbits on
the attractor has been proposed and applied to synchron-
ization of chaotic systems [16], and a method for generat-
ing desired chaotic orbits has been proposed for one-
dimensional maps [17].

This paper is organized as follows. In Sec. II, we de-
scribe our method of constructing a target orbit in the
desired chaotic phase. We also discuss the application of
the OGY idea to stabilize trajectories around the target
orbit. Numerical results using the Ikeda-Hammel-Jones-
Moloney map [4] in a parameter regime after an interior
crisis are presented in Sec. III. In Sec. IV, we present
conclusions and general discussions.

II. CONSTRUCTION OF THE TARGET CHAOTIC
ORBIT AND THE CONTROL METHOD

Our goal is to construct an arbitrarily long target orbit
that resides only on some nontrivial subset of the chaotic
attractor. We consider the situation where the dynamical
system possesses a chaotic attractor with a natural invari-
ant measure. Thus, trajectories on the attractor are er-
godic and, almost every initial condition in the basin of
attraction of the attractor generates orbits that wander
on the whole attractor. It can be rigorously proven that
there exist ergodic invariant measures (i.e., the natural
measures) for one-dimensional maps under fairly general
conditions, and it is believed that such ergodic measures
also exist for chaotic attractors of higher-dimensional
systems [18]. If we evolve the system without any inter-
vention (i.e., either small phase space or parameter space
perturbations), the chaotic trajectory will come arbitrari-
ly close to any points on the whole attractor. While it is
possible to find short orbits, namely, orbits whose lengths
are less than the average time a typical chaotic trajectory
spends in the desirable part of the attractor (see Fig. 1), it
is not possible in practice to find arbitrarily long orbit
wandering only on the desirable part of the attractor.
One may choose different initial conditions to search for
such a long target orbit, but the search time for these or-
bits, if they exist, will be prohibitively long. Therefore, it
is necessary to interrupt the chaotic trajectory in a time-
dependent fashion to obtain an arbitrarily long target or-
bit. The strategy we will use in this paper is similar to
the technique of “targeting” [19] which directs a chaotic
orbit originating from a given initial condition rapidly to
another given point on the chaotic attractor. In our case,
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the idea is to monitor the trajectory so that whenever it
starts to escape the desirable part of the attractor, say, at
time ¢,, we go back to some earlier time ¢, where ¢, <t,,
to apply small perturbations to the orbit so that the new
orbit starting from ¢, still stays on the desirable part of
the attractor within time ¢,. This can indeed be achieved
due to the “butterfly” effect of the chaotic attractor, i.e.,
sensitive dependence of chaotic trajectories on small per-
turbations.

Our method is detailed as follows. Given a chaotic sys-
tem, trajectories starting from almost all initial condi-
tions eventually visit all part of the chaotic attractor.
Suppose that at time ¢ we give a small perturbation € to
the trajectory. At time ¢t +7, where T ~In(L /€)/A .
(L is the size of the chaotic attractor and A, is the larg-
est Lyapunov exponent), the perturbation grows to the
whole extent of the attractor and, consequently, the tra-
jectory is completely altered by this time. Our algorithm
for constructing a target orbit consists of several steps.
First, we choose a random initial condition and iterate it
for a certain length of the time to get rid of the transient
and to land the trajectory on the desired part of the
chaotic attractor. Denote the trajectory point after the
initial transient to be y,. Next, we iterate y, for At (the
observation time) and monitor the trajectory to see if it
falls on the undesired part of the attractor in A¢. If not,
¥, is taken as the first point on the target orbit. If it does,
a small random perturbation € is applied to y, to yield a
new starting trajectory point y;. This process is repeated
until all trajectory points starting from y, within time At
fall on the desired part of the attractor. The perturbed
starting point yj is then taken as the first point y, on the
target orbit. For the next point on the target orbit, we
iterate y, once to get y; and perform the monitoring pro-
cess for y; until trajectory points starting from y, all fall
on the desired part of the attractor within the observation
time At. The entire process is repeated and, in principle,
arbitrarily long target chaotic orbits can be obtained.
Note that the observation time At should be at least T,
the time required for the small perturbation € to grow to
the size of the attractor.

After an appropriate target orbit is obtained, we can
apply the OGY idea of controlling chaos to stabilize it.
Consider a chaotic system that can be described by two-
dimensional maps on the Poincaré surface of section,

xn+1=F(xn,p) ’ (1)

where x, ER?, p is an externally controllable parameter.
For p values considered in this paper, we assume that tra-
jectories starting from almost all initial conditions exhibit
intermittent chaotic behavior and there are distinct parts
of the chaotic attractor corresponding to desired and un-
desired phases. In the spirit of the OGY idea, we require
that the parameter perturbations be small, i.e.,

|Ap|=|p —pol <8, 2)

where p, is some nominal parameter value and 8 is a
small number defining the range of parameter perturba-
tions. Let {y,} (r =0,1,2,...,N) be a long target orbit
on the desired part of the chaotic attractor. Now gen-
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erate the trajectory {x,} to be stabilized around the tar-
get orbit. Randomly pick an initial condition x, and as-
sume that the trajectory point x, (n =0) falls in a small
neighborhood of the point y, of the target orbit at time
step n. Without loss of generality, we set k =n on the
target orbit. In this small neighborhood, the lineariza-
tion of Eq. (1) is applicable. We have, thus,

Xy +1(Pn) = Y0 +1(Po)=T[X,(po)—y,(po) ] +KAp, , ()

where Ap,=p,—po, |Ap,| <8, J is the 2X2 Jacobian
matrix and K is a two-dimensional column vector,

J=DXF(X’P)\x=yn,p=p07 K::D‘,F(}(,p)l,‘:yn,p=‘,0 .4
Without control, i.e., Ap,=0, the trajectory x;
(i=n+1,...) diverges from the target orbit vy;

(i=n+1,...)exponentially. The task is to program the
parameter perturbations Ap, so that |x; —y;|—0 for sub-
sequent iterates i = n + 1.

For each point on the target orbit, there exist both a
stable and an unstable direction [20]. These directions
can be calculated by using the numerical method of Ref.
[20]. The calculated stable and unstable directions are
stored together with the target orbit, all of which are to
be used to compute the parameter perturbations applied
at each time step. Let e, and e, be the stable and un-
stable directions at y, and, f,,, and f,,, be two
vectors perpendicular to e, (,, and e ,, respectively. The
vectors f((,, and f,,, are also called the contravariant
vectors [11], which satisfy f, )€, =f, € =1 and
To stabilize {x,} around
{y.}, we require the next iteration of x,,, after falling into
a small neighborhood around y,, to lie on the stable
direction at y, +1)(po), i.e.,

fu(n)'es(n): fs(n)'eu(n)zo‘

(%0 1= Y+ 10(P0) 1 Fun+1)=0 . (&)

Substituting Eq. (3) into Eq. (5), we obtain the following
expression for the parameter perturbation:

{J'[xn—yn(po)]} 'fu(n +1)
Ap,= , (6)
_K.fu(n—kl)

where if Ap, > 5, we set Ap, =0.

In stabilizing unstable periodic orbits, the average tran-
sient (““waiting”) time to achieve the control scales with
the maximum allowed parameter perturbation 8 as
7~877, where the scaling exponent ¥ can be computed
in terms of the stable and unstable eigenvalues of the un-
stable periodic orbits [11]. For cases where ¥ > 1 (typical
for two-dimensional maps [11]), the transient time can be
significantly reduced if somewhat larger parameter per-
turbations are allowed. The problem of transient time is
much less severe in our case, since our target orbit is very
long. In principle, when the trajectory enters the neigh-
borhood of any one of the points on the target orbit, pa-
rameter control Eq. (6) can be applied. Thus, even if the
size of every neighborhood around the target orbit is
small, the transient time required can be significantly re-
duced by increasing the length of the target orbit.
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III. NUMERICAL RESULTS

To illustrate control, we use the following Ikeda-
Hammel-Jones-Maloney map [4],

ik——P

z = A +Bz,ex —
n+1 n p 1+|Z"[2

) 7

which is an idealized model of an optical ring cavity [4],
where z =x +iy is a complex number. Equation (7) thus
defines a two-dimensional map (x,,y,)—>(x, 1, V,+1)-
We choose p to be the control parameter. For parameter
values 4=0.85, B=0.9, k=0.4, and p,=7.3688, there is
a chaotic attractor, as shown in Fig. 2. The maximum
Lyapunov exponent of the chaotic attractor is
Amax=0.431 and the size of the whole attractor is L ~4.0.
Thus the time required for perturbations of magnitude
€=10"° to grow to the size of the attractor is
T ~In(L /€) /A= 30 iterations. On the attractor, there
are clearly two distinct components. One is the part
roughly in the center of the plot with higher probability
density, i.e., orbits tend to visit this part of the attractor
more frequently. The other part is the outer part with
lower probability density. The coexistence of these two
distinct parts of the attractor in the phase space gives rise
to the intermittently chaotic time series shown in Fig. 1.
Dynamically, there is an interior crisis at p,~7.2688
[1,2]. For p <p,, there is a small chaotic attractor that
corresponds to the inner part of the attractor at
p=17.3688, and also a nonattracting chaotic saddle that
roughly corresponds to the outer part of the attractor at
p=7.3688. At p =p,, the small chaotic attractor collides
with the chaotic saddle, resulting in a larger attractor
which is approximately the union of the small chaotic at-
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FIG. 2. A chaotic attractor of the Ikeda-Hammel-Jones-
Moloney map at A4=0.85, B=0.9, k=04, and p=7.3688.
There are two distinct parts of the chaotic attractor. One is lo-
cated approximately at the center of the plot with higher fre-
quency of visits by the trajectory. This part corresponds to a
chaotic attractor that exists before the interior crisis at
p =p.~7.2688. The other distinct part is located exterior to the
inner part with a much lower probability density of orbit visits.
This part evolves from a nonattracting chaotic saddle that exists
before the crisis.

tractor and the chaotic saddle. For p >p,, trajectories
visit both parts of the attractor, leading to intermittently
chaotic time series.

Our goal is to stabilize trajectories on the inner part of
the chaotic attractor. The first step is to construct a tar-
get orbit that wanders only on the inner part of the at-
tractor. As we described in Sec. II, when the trajectory
starting from some point falls on the outer part of the at-
tractor within the observation time At, perturbations of
the type 10730, where o is a uniform random variable in
[0,1], are applied to that point. To guarantee that the
small perturbation grows to the size of the attractor
within A¢, we choose At =50> T'=~30. Figure 3(a) shows
20000 points on a target chaotic orbit on the inner at-
tractor. Compared with the inner part of the original at-
tractor (Fig. 2), there are gaps that appear to exist in all
scales on the target attractor, as shown in a blowup of the
target orbit in part of the phase space, in Fig. 3(b). These
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FIG. 3. (a) A long trajectory of the reconstructed target
chaotic attractor that corresponds to the inner part of the at-
tractor in Fig. 3. The observation time interval and the phase-
space perturbation used to construct the target attractor are
At=50 and €=10"%, respectively. (b) Blowup of the target or-
bit in part of the phase space.
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gaps arise due to the complicated heteroclinic crossing of
stable and unstable manifolds associated with the chaotic
attractor and the chaotic saddle that exist before the
crisis [2] and, therefore, these gaps are the “invaded” re-
gions of the outer part of the attractor, which corre-
sponds to the nonattracting chaotic saddle before the
crisis.

To achieve the control, it is necessary to compute the
stable and unstable directions (e, and e, ) for each point
on the target orbit [20]. Figures 4(a) and 4(b) show the
stable and unstable directions, respectively, for 5000
points on the target orbit. Knowing these directions, the
stable and unstable contravariant vectors are computed
straightforwardly by using f,,)-€,,=f€m=1 and
fL o €sm™fsn)€uny=0. Parameter perturbations can
then be computed from Eq. (6) at each time step.

Figure 5(a) shows a controlled trajectory (20000
points) in the phase space starting from an arbitrarily ini-
tial condition. Initially, the trajectory is not close to the
target orbit. As soon as it is within 103 of some point
on the target orbit, parameter perturbations are applied
to stabilize the trajectory around the target orbit. The
time required for this to occur is usually a few hundred
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FIG. 4. Stable (a) and unstable (b) directions at 5000 points
on the reconstructed target attractor.
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iterations (quite short indeed). The maximum allowed
parameter perturbation is set to be §=10"2. Visually,
the controlled trajectory looks the same as the target or-
bit. Figures 5(b) and 5(c) show the controlled time series
x, and y,, respectively, which are apparently within the
desired part of the chaotic attractor. The undesired
(outer) part of the original attractor is never visited by
the controlled trajectory. Figure 5(d) shows the required
parameter perturbation Ap, as a function of the discrete
time n. In general, the applied parameter perturbations
are around 107 7%, very small indeed. Occasionally,
somewhat larger parameter perturbations are required
(around 1073), which occurs when the trajectory gets
very close to points on the target orbit where stable and
unstable directions are almost identical (the so called
tangency points) [21]. In principle, the target orbit can
be made arbitrarily long, so the controlled desired trajec-
tory can be arbitrarily long, accordingly. An alternative
approach could be to construct a long recurrent orbit on
the desired part of the chaotic attractor such that in any
practical time scales the orbit is chaotic. Trajectories sta-
bilized around the recurrent orbit would then exhibit
desired chaotic behavior in practically relevant time
scales.

IV. DISCUSSIONS

In this work, we have devised a scheme to stabilize tra-
jectories around some distinct part of a chaotic attractor
by applying small perturbations to a system parameter.
The controlled trajectory would supposedly correspond
to a better operational chaotic state of the system. Our
feedback control method is based on the OGY idea of
stabilizing unstable periodic orbits. The features of our
work are twofold. First, we use the butterfly effect of
chaotic systems to construct a target orbit on the desired
part of the chaotic attractor. Second, we make use of the
geometric structure, stable and unstable directions, along
the target orbit to achieve the control. Our strategy thus
allows us to select a desired state of the system to be sta-
bilized, thereby avoiding the other, undesired part of the
attractor, which corresponds to the undesired state of the
system.

The method described is robust in the presence of
small external noise. This is so because the target orbit is
constructed by applying small random perturbations in
the state variables when necessary and, consequently, the
target orbit is actually a noisy chaotic orbit. The readi-
ness with which the control is achieved, and the extreme-
ly small parameter perturbations required [Fig. 5(d)], sug-
gest that our method works even in a noisy environment.

An appealing feature of our method lies in its potential
relevance to biological systems. It is commonly believed
now that some healthy states of biological systems may
be chaotic. A known example is the human heart rate
variability [7], where a healthy heart would generate very
irregular, or chaotic, heart-rate variations in time. Regu-
lar or nonchaotic heart rate variations are usually gen-
erated in hearts with serious malfunctions. Thus, it is
desirable to maintain chaotic heart-rate variations for
cardiac patients. Nonetheless, despite the positivity of
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FIG. 5. (a) The controlled trajectory in the neighborhood of the target chaotic attractor. The trajectory starts from an arbitrary
initial condition. When the trajectory is within 1073 of some point on the target attractor, small parameter perturbations with mag-
nitude less than 1072 are applied to stabilize the trajectory around the target orbit. (b) and (c) Controlled time series x, and y,, re-
spectively. It is clear that the controlled time series only contain the desired chaotic phase. The controlled trajectory never visits the
outer attractor, which corresponds to the undesired chaotic phase. (d) The required parameter perturbation Ap,, which is about
10773 on the average. Occasionally, somewhat larger parameter perturbations (about 10~*) are required, which occurs when the
controlled trajectory is close to points where the stable and unstable directions are very close (tangency points).

chaos, some chaotic states may correspond to undesirable
states of the system, as in certain types of epileptic
seizures [5]. Therefore, in this case it is desirable to keep
the system running in the favored chaotic state to avoid
the unfavored chaotic state. The present work has
demonstrated that this is possible, at least for very simple
chaotic systems. While our numerical examples are per-
formed using a well studied low-dimensional chaotic sys-
tem, we believe that our idea may have potential
relevance to more complicated biological and physical
systems where certain chaotic states are desired.

Finally, we remark that the algorithm presented in this
paper applies well when a system’s equations are known.
In experiments it is usually the case that only a measured
time series is available. It is then necessary to use the
delay-coordinate embedding technique [22] to extract
quantities required to compute the parameter perturba-
tions, such as the stable and unstable directions along the

target orbit. While calculating such quantities for low-
periodic orbits embedded in a chaotic attractor is rela-
tively easy [11,13], it is not clear at present that this can
be easily done for a long target orbit embedded in a
chaotic attractor. Therefore, there is currently no as-
surance that our technique can be readily applied to real
experimental systems where the equations are not avail-
able. Nonetheless, we hope that the method in this paper
will stimulate work in the stabilizing of chaotic states in
experiments.
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